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Abstract— Finger-gaiting manipulation is an important skill
to achieve large-angle in-hand re-orientation of objects. How-
ever, achieving these gaits with arbitrary orientations of the
hand is challenging due to the unstable nature of the task. In
this work, we use model-free reinforcement learning (RL) to
learn finger-gaiting only via precision grasps and demonstrate
finger-gaiting for rotation about an axis purely using on-board
proprioceptive and tactile feedback. To tackle the inherent
instability of precision grasping, we propose the use of initial
state distributions that enable effective exploration of the state
space. Our method can learn finger gaiting with significantly
improved sample complexity than the state-of-the-art. The
policies we obtain are both robust and generalizable to novel
objects.

I. INTRODUCTION

Dexterous in-hand manipulation [1] is the ability to move
a grasped object from one pose to another desired pose.
Humans routinely use in-hand manipulation to perform tasks
such as re-orienting a tool from its initial grasped pose to a
useful pose, securing a better grasp on the object, exploring
the shape of an unknown object, etc. Thus, robotic in-hand
manipulation is an important step towards the general goal of
manipulating objects in cluttered and unstructured environ-
ments such as in a kitchen or a warehouse. However, versatile
in-hand manipulation remains a long standing challenge.

A whole spectrum of methods have been considered for
in-hand manipulation; online trajectory optimization meth-
ods [2] and model-free deep reinforcement learning (RL)
methods [3] stand out for highly actuated dexterous hands.
Model-based online trajectory optimization methods have
succeeded in generating complex behaviors for dexterous
robotic manipulation, but not for finger-gaiting as these
tasks fatally exacerbate their limitations: transient contacts
introduce large non-linearities in the model, which also
depends on hard-to-model contact properties.

While RL has been successful in demonstrating diverse in-
hand manipulation skills both in simulation and on real hands
[4], the policies obtained are object centric and require large
training times. In some cases, these policies have not been
demonstrated with arbitrary orientations of the hand as they
expect the palm to support the object during manipulation
—a consequence of the policies being trained with the hand
in palm-up orientation which simplifies training. In other
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Fig. 1: A learned finger-gaiting policy that can continuously re-
orient the target object about the hand z-axis. The policy only uses
sensing modalities intrinsic to the hand (such as touch and proprio-
ception), and does not require explicit object pose information from
external sensors.

cases, policies require extensive external sensing involving
multi-camera systems to track the fingers and/or the object,
systems that are hard to deploy outside the lab environments.

Tactile feedback has strong potential in enabling robust
and generalizable in-hand manipulation skills [5] and in
eliminating the need for external sensing. However, inte-
grating tactile feedback with RL is a challenge on its own.
Besides the general difficulty of simulating the transduction
involved, tactile feedback is often high dimensional which
can prohibitively drive up the number of training samples
required. Hence, prior work using RL for in-hand manipu-
lation either totally avoid using tactile feedback or consider
tasks requiring fewer training samples where it is feasible to
learn directly with the real hand.

We too use RL, but focus on learning finger-gaiting (ma-
nipulation involving finger substitution and re-grasping) and
finger-pivoting (manipulation involving the object in hinge-
grasp) skills. Both skills are important towards enabling
arbitrary large-angle in-hand object re-orientation: achieving
an indefinitely-large rotation of the grasped object around a
given axis, up to or even exceeding a full revolution. Such
a task is generally not achievable by in-grasp manipulation
(i.e. without breaking the contacts of the original grasp) and
requires finger-gaiting or finger-pivoting (i.e. breaking and
re-establishing contacts during manipulation); these are not
restricted by the kinematic constraints of the hand and can
achieve potentially limitless object re-orientation.

We are interested in achieving these skills exclusively
through using fingertip grasps (i.e precision in-hand ma-
nipulation [6]) without requiring the presence of the palm
underneath the object, which enables the policies to be used
in arbitrary orientations of the hand. However, the task of
learning to manipulate only via such precision grasps is a
significantly harder problem: action randomization, respon-
sible for exploration in reinforcement learning, often fails as
the hand can easily drop the object.



Furthermore, we would like to circumvent the need for
cumbersome external sensing by only using internal sensing
in achieving these skills. The challenge here is that the
absence of external sensing implies we do not have infor-
mation regarding the object such as its shape and pose. On
the other hand, internal sensing by itself can provide object
information sufficient towards our goal.

We set out to determine if we can even achieve finger-
gaiting and finger-pivoting skills purely through intrinsic
sensing in simulation, where we evaluate both proprioceptive
feedback and tactile feedback. To this end, we consider
continuous object re-orientation about a given axis towards
learning finger-gaiting and finger-pivoting without object
pose information. With this approach, we hope to learn
policies to rotate object about cardinal axes and combine
them for arbitrary in-hand object re-orientation. To overcome
challenges in exploration, we propose collecting training
trajectories starting from a wide range of grasps sampled
from appropriately designed initial state distributions as an
alternative exploration mechanism.

We summarize the contributions of this work as follows:
1) We learn finger-gaiting and finger-pivoting policies

that can achieve large angle in-hand re-orientation
of a range of simulated objects. Our policies learn
to grasp and manipulate only via precision fingertip
grasps using a highly dexterous and fully actuated
hand, allowing us to keep the object in a stable grasp
without the need for passive support at any instance
during manipulation.

2) We are the first to achieve these skills while only
making use of intrinsic sensing such as proprioception
and touch, while also generalizing to multiple object
shapes.

3) We present an exhaustive analysis of the importance of
different internal sensor feedback for learning finger-
gaiting and finger-pivoting policies in a simulated
environment using our approach.

II. RELATED WORK

Early model-based work on finger-gaiting [7][8] [9] [10]
and finger-pivoting [11] generally make simplifying assump-
tions such as 2D manipulation, accurate models, and smooth
object geometries which limit their versatility. More recently,
Fan et al. [12] and Sundaralingam et al. [13] use model
based online optimization and demonstrate finger-gaiting in
simulation. These methods either use smooth objects or
require accurate kinematic models of the of the object, which
make these methods challenging to transfer to real hands.

OpenAI et al. [4] demonstrate finger-gaiting and finger-
pivoting using RL, but as previously discussed, their policies
cannot be used for arbitrary orientations of the hand. This
can be achieved using only force-closed precision fingertip
grasps, but learning in-hand manipulation using only these
grasps is challenging with few prior work. Li et al. [14] learn
2D re-orientation using model-based controllers to ensure
grasp stability in simulation. Veiga et al. [15] demonstrate
in-hand reorientation with only fingertips but these object

centric policies are limited to small re-orientations via in-
grasp manipulation and still require external sensing. Shi
et al. [16] demonstrate precision finger-gaiting but only on
a lightweight ball. Morgan et al. [17] also show precision
finger-gaiting but with an under-actuated hand specifically
designed for this task. We consider finger-gaiting with a
highly actuated hand; our problem is exponentially harder
due to increased degrees of freedom leading to poor sample
complexity.

Some prior work [18][19][20] use human expert trajecto-
ries to improve sample complexity for dexterous manipula-
tion. However, these expert demonstrations are hard to obtain
for precision in-hand manipulation tasks and even more so
for non-anthropomorphic hands. Alternatively, model-based
RL has also been considered for some in-hand manipulation
tasks: Nagabandi et al. [21] manipulate boading balls but
use the palm for support; Morgan et al. [17] learn finger-
gaiting but with a task specific underactuated hand. However,
learning a reliable forward model for precision in-hand
manipulation with a fully dexterous hand can be challenging.
Collecting data involves random exploration, which, as we
discuss later in this paper, has difficulty exploring in this
domain.

Prior work using model-free RL for manipulation rarely
use tactile feedback as tactile sensing available on real hand
is often high dimensional and hard to simulate [4]. Hence,
van Hoof et al. [22] propose learning directly on a real hand,
but this naturally limits us to tasks learnable on real hands.
Alternatively, Veiga et al. [15] learn a higher level policy
through RL, while having low level controllers exclusively
deal with tactile feedback. However, this method deprives the
policy from leveraging tactile feedback beneficial in other
challenging tasks. While Melnik et al. [23] show that using
tactile feedback improves sample complexity in such tasks,
they use high-dimensional tactile feedback with full coverage
of the hand that is hard to replicate on a real hand. We instead
consider low-dimensional tactile feedback covering only the
fingertips.

Contemporary to our work, Chen et al. [24] show in-
hand re-orientation without support surfaces that generalizes
to novel objects. The policies exhibit complex dynamic
behaviors including occasionally throwing the object and re-
grasping it in the desired orientation. We differ from this
work as our policies only use sensing that is internal to
the hand, and always keep the object in a stable grasp to
be robust to perturbation forces at all times. Furthermore,
our policies require a number of training samples that is
smaller by multiple orders of magnitude, a feature that we
attribute to efficient exploration via appropriate initial state
distributions.

III. LEARNING PRECISION IN-HAND RE-ORIENTATION

In this work, we address two important challenges for
precision in-hand re-orientation using reinforcement learn-
ing. First, we propose a hand-centric decomposition method
for achieving arbitrary in-hand re-orientation in an object-
agnostic fashion. Next, we identify that a key challenge
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Fig. 2: Hand-centric decomposition of in-hand re-orientation into
re-orientation about cardinal axes

of exploration for learning precision in-hand manipulation
skills can be alleviated by collecting training trajectories
starting at varied stable grasps. We use these grasps to
design appropriate initial state distributions for training. Our
approach assumes a fully-actuated and position-controlled
hand.

A. Hand-centric decomposition

Our aim is to push the limits on manipulation with only
intrinsic sensing, and do this in a general fashion without
assuming object knowledge. Thus, we do so in a hand-
centric way: we learn to rotate around axes grounded in the
hand frame. This means we do not need external tracking
(which presumably needs to be trained for each individual
object) to provide object-pose1. We also find that rewarding
angular velocity about desired axis of rotation is conducive to
learning finger-gaiting and finger-pivoting policies. However,
learning a single policy for any arbitrary axis is challenging
as it involves learning goal-conditioned policies, which is
difficult for model free RL.

Our proposed method for wide arbitrary in-hand re-
orientation is thus to decompose the problem of achieving
arbitrary angular velocity of the object into learning separate
policies about the cardinal axes as shown in Fig. 2. The
finger-gaiting policies obtained for each axis can then be
combined in the appropriate sequence to achieve the desired
change in object orientation, while side-stepping the diffi-
culty of learning a goal-conditioned policy.

We assume proprioceptive sensing can provide current
positions q and controller set-point positions qd. We note that
the combination of desired positions and current positions
can be considered as a proxy for motor forces, if the
characteristics of the underlying controller are fixed. More
importantly, we assume tactile sensing to provide contact
positions ci and normal forces tin on each fingertip i. With
known fingertip geometry, the contact normals t̂in can be
derived from contact positions ci.

Our axis-specific re-orientation policies are conditioned
only on proprioceptive and tactile feedback as given by the
observation vector o:

o = [q, qd, c
1 . . . cm, t1n . . . t

m
n , t̂

1
n . . . t̂

m
n ] (1)

Our policies command set-point changes ∆qd which we
henceforth refer to by action a.

1We note that there exist applications where specific object poses are
needed, and for such cases we envision future work where a high-level
object-specific tracker makes use of our hand-centric object-agnostic policies
to achieve it.
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Fig. 3: Learning axis conditional continuous re-orientation k̂. We
use the component of angular velocity ω about k̂ as reward when
we the object is a grasp with 3 or more fingertips, i.e nc ≥ 3.

B. Learning axis-specific re-orientation

We now describe the procedure for learning in-hand re-
orientation policies for an arbitrary but fixed axis. Let k̂
be the desired axis of rotation. To learn policy axis-specific
policy πk̂ that continuously re-orients the object about the
desired axis we use the object’s angular velocity ω along k̂
as reward as shown in Fig 3. However, to ensure that the
policy learns to only use precision fingertip grasps to re-
orient the object, we provide this reward if only fingertips
are in contact with the object. In addition, we require that at
least 3 fingertips are in contact with the object as they can
achieve force closure. Also, we encourage alignment of the
object’s axis of rotation with the desired axis by requiring
the separation to be limited to φmax.

r = max(rmax,ω.k̂) I[nc ≥ 3 ∧ φ ≤ φmax]

+ min(0,ω.k̂) I[nc < 3 ∨ φ > φmax] (2)

The reward function is described in (2), where nc is the
number of fingertip contacts and φ is the separation between
the desired and current axis of rotation. Symbols ∧, ∨, I
are the logical and, the logical or, and indicator function,
respectively. Notice that we also use reward clipping to
avoid local optima and idiosyncratic behaviors. Although
the reward uses the object’s angular velocity, we do not
need additional sensing to measure it as we only train in
simulation with the intent of zero-shot transfer to hardware.

C. Enabling exploration with domain knowledge

A fundamental issue in using reinforcement learning for
learning precision in-hand manipulation skills is that a ran-
dom exploratory action can easily disturb the stability of the
object held in a precision grasp, causing it to be dropped. In
our case, where we are interested in learning finger-gaiting,
this issue is further worsened. Finger-gaiting requires finger-
tips to break contact with the object and transition between
different grasps, involving different fingertips, all while re-
orienting the object. As one can expect, the likelihood of
selecting a sequence of random actions that can accomplish
this feat while obtaining a useful reward signal is extremely
low.

For a policy to learn finger-gaiting, it must encounter these
diverse grasps within its training samples so that the policy’s
action distributions can improve at these states Consider
taking a sequence of random actions starting from a stable
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Fig. 4: (a) Sampling fingertips around the object (b) Diverse relevant
initial grasps sampled for efficient exploration
m-finger grasp. While it possible to reach a stable grasp
with an additional finger in contact (if available), it is more
likely to lose one finger contact, then another and so on until
the object is dropped. Over multiple trials, we can expect
to encounter most combinations of m − 1 grasps. In this
setting, it can be argued that starting from a stable grasp
with all n fingers in contact leads to maximum exploration.
Interestingly, as we will demonstrate in Sec IV-A, we found
this to be insufficient.

Our insight is to observe that through domain knowledge
we are already aware of the states that a sufficiently ex-
ploratory policy might visit. Using domain knowledge in
designing initial distributions is known way of improving
sample complexity. [25][26]. Thus, we use our knowledge of
relevant states in designing the initial states used for episode
rollouts and show that it is critical for learning precision
finger-gaiting and finger-pivoting.

We propose sampling sufficiently-varied stable grasps rel-
evant to re-orienting the object about the desired axis and
use them as initial states for collecting training trajectories.
These grasps must be well distributed in terms of number of
contacts, contact positions relative to the object, and object
poses relevant to the task. To this end, we first initialize the
object in an random pose and then sample fingertip positions
until we find a stable grasp as described in Stable Grasp
Sampling (SGS) in Alg. 1.

In, SGS we first sample object pose and a hand pose,
then update the simulator with the sampled poses towards
obtaining a grasp. We forward simulate for a short duration,
ts, to let any transients die down. If the object has settled

Algorithm 1 Stable Grasp Sampling (SGS)
Input:ρobj , ρhand, ts, nc,min . object
pose distribution, hand pose distribution, simulation settling
time, minimum number of contacts
Output: sg . simulator state of the sampled grasp

1: repeat
2: Sample object and hand pose: xs ∼ ρobj , qs ∼ ρhand
3: Set object pose in the simulator with xs

4: Set joint positions and controller set-points with qs

5: Step the simulation forward by ts seconds
6: Find number of fingertips in contact with object, nc
7: until nc ≥ nc,min

8: Save simulator state as sg

into a grasp with at least two contacts, it is used towards
collecting training trajectories. Note that the fingertips could
be overlapping with the object or with each other as we do
not explicitly check this. However, this is resolved during
forward simulation. An illustrative set of grasps sampled by
SGS are shown in Fig 4b.

To sample the hand pose, we start by sampling fingertip
locations within an annulus around the around the object.
As shown in Fig 4a, this annulus is centered on the object
and partially overlaps with it, such that probabilities of the
fingertip making contact with the object and of staying free
are roughly the same. With this procedure, not only do
we find stable grasps relevant to finger-gaiting and finger-
pivoting, we improve the likelihood of discovering them, thus
minimizing training wall-clock time.

IV. EXPERIMENTS AND RESULTS

For evaluating our method, we focus on learning precision
in-hand re-orientation about the z- and x- axes for a range of
regular object shapes. We do not separately consider y-axis
re-orientation as it is similiar to x-axis, given the symmetry of
our hand model. Our object set, which consists of a cylinder,
sphere, icosahedron, dodecahedron and cube, is designed so
that we have objects of varying difficulty with the sphere and
cube being the easiest and hardest, respectively. For training,
we use PPO [3].

For the following analysis we take learning z-axis re-
orientation as a case study. In addition to the above, we
train z-axis re-orientation policies without assuming joint
set-point feedback qd. For all these policies, we study their
robustness properties by adding noise and also by applying
perturbation forces on the object (Sec IV-B). We also study
the zero-shot generalization properties of these policies (Sec
IV-C). Finally, through ablation studies we present a detailed
analysis ascertaining the importance of different components
of feedback for achieving finger-pivoting (Sec IV-D).

We note that, in simulation, the combination of qd and q
can be considered a good proxy for torque, since simulated
controllers have stable stiffness. However, this feature might
not transfer to a real hand, where transmissions exhibit
friction, stiction and other hard to model effects. We thus
evaluate our policies both with and without joint set-point
observations.

A. Learning finger-gaiting manipulation

In Fig 6a, we show the learning curves for object re-
orientation about the z-axis for a range of objects from
using our method of sampling stable initial grasps to improve
exploration. We also show learning curves using a fixed
initial state (grasp with all fingers) for representative objects.
First, we notice that the latter approach does not succeed.
These policies only achieve small re-orientation via in-
grasp manipulation and drop the object after maximum re-
orientation achievable without breaking contacts.

However, when using a wide initial distribution of grasps
(sampled via SGS), the policies learn finger-gaiting and
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two objects, dodecahedron and cube. Videos of the gaits can be found at https://roamlab.github.io/learnfg/
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Fig. 6: Average returns for (a) z-axis re-orientation and (b) x-axis
re-orientation. Figure shows that learning with wide range of initial
grasps sampled via SGS succeeds while using a fixed initial state
fails.
achieve continuous re-orientation of the object with signif-
icantly higher returns. With our approach, we also to learn
finger-pivoting re-orientation about the x-axis with learning
curves shown in Fig 6b. Thus, we empirically see that using
a wide initial distribution consisting of relevant grasps is
critical for learning continuous in-hand re-orientation via
finger-gaiting. Fig 5 shows our finger-gaiting and finger-
pivoting policies performing continuous object re-orientation
about z-axis and x-axis respectively.

As expected, difficulty of rotating the objects increases
as we consider objects of lower rotational symmetry from
sphere to cube. In the training curves in Fig 6, we can
observe this trend not only in the final returns achieved by
the respective policies, but also in the number of samples
required to learn continuous re-orientation. The sudden jump

in the returns, which corresponds to when the policy “figures
out” finger-gaiting/finger-pivoting, is also observed later for
harder objects.

We also successfully learn policies for in-hand re-
orientation without joint set-point position feedback, but
these policies achieve slightly lower returns. However, they
may have interesting consequences for generalization as we
will discuss in Sec IV-C.

B. Robustness

In Fig 7, we show the performance of our policy for the
most difficult object in our set (cube) as we artificially add
Gaussian noise to different sensors’ feedback with increasing
variance. We also increasingly add perturbation forces on the
object. We can see that, overall, our policies are robust to
noise and perturbation forces of magnitudes reasonable for
a real hand.

Our policies show little drop in performance for noise in
joint positions q. However, our policies are more sensitive to
noise in contact feedback; nonetheless, they are still robust
and achieve high returns even at 5mm error in contact
position and 25% error in contact force. Interestingly, for
noise in contact postion, we found that drop in performance
arises indirectly through the error in contact normal t̂in
(computed from contact position cin). As for perturbation
forces on the object, we observe high returns even for at
high perturbation forces (1N) equivalent to the weight of our
objects. Also, the policies trained without joint-set feedback
have similar robustness profiles.

C. Generalization

We study generalization properties of our policies by
evaluating it on a different object in the object set. For this
we consider the transfer score, which is the ratio Rij/Rii

where Rij is the average returns obtained when evaluating
the policy learned with object i on object j.

https://roamlab.github.io/learnfg/
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In Fig 8, we see the cross transfer performance for policies
trained with all feedback. For these policies, we see that the
policy trained on the sphere transfers to the cylinder and
vice versa. Also, the policies trained on icosahedron and
dodecahedron transfer well amongst themselves while also
performing well on sphere and cylinder. Interestingly, the
policy trained on the cube does not transfer well to the other
objects. For policies learnt without joint set-point position
feedback qd, the policy learned on the cube transfers to
more objects. With no way to infer motor forces, the policy
potentially learns to rely more on contact feedback which
aids generalization.

D. Observations on feedback

While our work provides some insight w.r.t the important
components of our feedback through our robustness and
generalization results, it is still limited in scope. There are
a number of interesting questions. Is it possible for use to
learn finger-gaiting with only proprioceptive feedback? What
about learning with just contact feedback? What matters in
contact feedback? To answer such questions, we run a series
of ablations holding out different components. For this, we
again consider learning finger-gaiting on the cube as shown
in Fig 9.

With this ablation study, we can make a number of impor-
tant and interesting observations. As we can expect, contact
feedback is essential for learning in-hand re-orientation via
finger-gaiting; we find that the policy does not learn finger-
gaiting with just proprioceptive feedback (#4). More interest-
ing and also surprising is that explicitly computing contact
normal tin and providing it as feedback is critical when
excluding joint position set-point qd (#6 to #10). In fact,
the policy learns finger-gaiting with just contact normal and
joint position feedback (#10). However, while not critical,
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Fig. 9: Ablations holding out different components of feedback. For
each experiment, dots in the observation vector shown above the
training curve indicate which of the components of the observation
vector are provided to the policy.

contact position and force feedback are still beneficial as
they improve sample efficiency (#6, #7).

V. CONCLUSION

In this paper, we focus on the problem of learning in-
hand manipulation policies that can achieve large angle
object re-orientation via finger gaiting. To facilitate future
deployment in real scenarios, we restrict ourselves to using
sensing modalities intrinsic to the hand, such as touch and
proprioception, with no external vision or tracking sensor
providing object-specific information. Furthermore, we aim
for policies that can achieve manipulation skills without
using a palm or other surfaces for passive support, and which
instead need to maintain the object in a stable grasp.

A critical component of our approach is the use of
appropriate initial state distributions during training, used to
alleviate the intrinsic instability of precision grasping. We
also decompose the manipulation problem into axis-specific
rotation policies in the hand coordinate frame, allowing for
object-agnostic policies. Combining these, we are able to
achieve the desired skills in a simulated environment, the first
instance in the literature of such policies being successfully
trained with intrinsic sensor data.

We consider this work to be a useful step towards future
sim-to-real transfer. To this end, we engage in an exhaustive
empirical analysis of the role that each sensing modality
plays in enabling our manipulation skills. Specifically, we
show that tactile feedback in addition to proprioceptive
sensing is critical in enabling such performance. Finally, our
analysis of the policies shows that they generalize to novel
objects and are also sufficiently robust to force perturbations
and sensing noise, suggesting the possibility of future sim-
to-real transfer.
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