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Fig. 1: Overview of SpikeATac. Left: completed finger and design. Right: integration on a parallel gripper and multifingered robot hand.
Combining high-performance, taxelized PVDF for dynamic sensing with capacitive pads for static sensing, SpikeATac enables fast yet
delicate manipulation. Used in conjunction with imitation learning and on-robot reinforcement learning fine-tuning, SpikeATac data can
also enable multifingered dexterity such as in-hand reorientation even on fragile objects.

Abstract— In this work, we introduce SpikeATac, a multimodal
tactile finger combining a taxelized and highly sensitive dynamic
response (PVDF) with a static transduction method (capacitive)
for multimodal touch sensing. Named for its ‘spiky’ response,
SpikeATac’s 16-taxel PVDF film sampled at 4 kHz provides
fast, sensitive dynamic signals to the very onset and breaking
of contact. We characterize the sensitivity of the different
modalities, and show that SpikeATac provides the ability to stop
quickly and delicately when grasping fragile, deformable objects.
Beyond parallel grasping, we show that SpikeATac can be used
in a learning-based framework to achieve new capabilities on a
dexterous multifingered robot hand. We use a learning recipe
that combines reinforcement learning from human feedback
with tactile-based rewards to fine-tune the behavior of a policy
to modulate force. Our hardware platform and learning pipeline
together enable a difficult dexterous and contact-rich task that
has not previously been achieved: in-hand manipulation of
fragile objects. For convenience, the supplementary video is
available at the anonymized address https://spikeatac.github.io.

I. INTRODUCTION

Tactile sensing typically falls into two categories: static
sensing, for measuring sustained or slowly varying pressure,
often with high spatial resolution, and dynamic sensing,
for detecting rapid changes in pressure with high temporal
resolution. These modes mirror biological mechanoreceptors,
with the human skin’s SA-I/II responding to sustained pressure
and stretch and FA-I/II to dynamic changes.

These types of sensing are highly complementary. While
static sensors can tell us about contact forces, contact
geometry, and surface features, dynamic tactile sensors can
reveal the precise moment when contact is made or broken,
capture slip events, and measure vibrations created from

extrinsic contacts and surface textures [1, 2]. Both are an
important part of rich, multimodal tactile sensation.

Given the promise of dynamic sensing, the field has
dedicated important resources to transduction methods that
can convert this promise into advanced manipulation abilities.
In particular, polyvinylidene fluoride (PVDF) has emerged
as a particularly promising material for dynamic sensing. It
is highly sensitive to dynamic events, offers high frequency
bandwidth, is low cost, and can be manufactured in thin,
flexible, and customizable form factors with custom taxel
arrangements [3–6]. Furthermore, amplification circuits can
even be fabricated directly on the PVDF film [6, 7], giving
it a high ceiling for scaling to larger and integrated arrays.

In principle, these properties make PVDF well suited for
creating dense, flexible, dynamic arrays. However, PVDF
has almost exclusively been implemented in robot fingers as
large, off-the-shelf taxels providing large-coverage, single-
taxel sensing. Challenges remain in (a) how to build taxelized
PVDF sheets that can integrate into a finger, (b) how to
complement PVDF with a static modality, and (c) how to
integrate its rich, difficult-to-simulate signals into modern,
data-driven manipulation pipelines.

In this work, we address all three challenges with
SpikeATac, a multimodal tactile finger containing a high fre-
quency (4 kHz), 16-taxel PVDF array embedded at the contact
surface, complemented by 7 capacitive pads embedded below
the PVDF for pressure sensing. An optional accelerometer
inside the finger provides additional high frequency feedback.
At 45× 32× 25 mm (length × width × thickness), SpikeATac
is just larger than a human thumb, has a finger-shaped form



factor conducive to stable contact states, and has 180○ sensing
coverage.

We demonstrate the utility of this new design in multiple
ways. First, we show that SpikeATac enables rapid yet delicate
manipulation, even of fragile objects, by leveraging the
extreme responsiveness of PVDF to contact onset. Second,
we integrate SpikeATacs into a four-finger robotic hand and
show that raw SpikeATac signals can be incorporated into
an imitation and reinforcement learning fine-tuning pipeline.
We provide a recipe for learning on real, complex SpikeATac
signals which achieves high dexterity even on fragile and
delicate objects. Overall, our primary contributions are:
● To our knowledge, we are the first to propose a method

for creating a robotic finger containing PVDF arrays
with many individuated taxels across the entire surface.
This design allows us to combine multi-taxel, dynamic,
high frequency sensing with an additional transduction
method (capacitive in our case) for static pressure.

● We leverage the extreme dynamic sensitivity of PVDF
by complementing it with static sensing to achieve
high-performance manipulation. We show an ability to
perform very fast yet delicate manipulation of extremely
fragile objects, an ability that, to our knowledge, has
not been demonstrated before.

● We also show that highly sensitive, dynamic tactile
sensing can be integrated into modern, learning-based
motor dexterous policies. Specifically, we combine
reinforcement learning from human feedback (RLHF)
and tactile-based rewards to fine-tune the behaviors of a
policy to precisely modulate force. We demonstrate this
via a multimodal policy combining dynamic and static
sensing to achieve dexterous, multifingered manipulation
of fragile objects, an ability that, to our knowledge, has
not been shown before.

II. RELATED WORK

1) Dynamic Sensing: Examples of dynamic modalities for
measuring surface vibration include event-based piezoresistive
arrays [8], capacitive sensors instrumented dynamically [2],
hydrophones [9], MEMS microphones [10–14], and ac-
celerometers or piezoelectrics embedded in the finger surface
[15, 16]. We believe that high vibration signal dimensionality
and spatial distribution are valuable, especially to a learned
model or policy which has the ability to parse complex,
overlapping signals and time-series data [8, 14, 17]. However,
scaling these sensors to high-dimensional arrays is nontrivial
due in part to transducer form factors, wiring, and sampling
challenges.

2) PVDF-based Fingertips: PVDF is an established dy-
namic sensing modality in robotics, and previous work has
shown its capability to sense contact events, slip events, and
textures [2, 3, 15, 16, 18–20]. A number of works have
combined PVDF strips with a static sensing modality in a
fingertip [19, 21–23], however these works utilize only one
or two PVDF strips, limiting their resolution. One study
combined multi-taxel PVDF with a piezoresistive array [5],
and another demonstrated how PVDF can be used for shear

sensing when fabricated in dense multi-taxel modules [24].
Neither of these works, however, demonstrate multi-taxel
PVDF in a fingertip.

3) Multimodal Fingers: Beyond PVDF, one can find many
multimodal finger designs in the literature using a variety
of sensing modalities. While many are flat form factors
[25–28], we focus on multi-curved fingers that can sense
diverse contacts during dexterous manipulation. Saloutos et al.
built a spherical multimodal fingertip combining barometers
and time-of-flight sensors [29], BioTac combines impedance
sensing electrodes in both DC and AC configurations, tem-
perature sensors, and a hydrophone for higher frequency
vibration sensing [9], and TacTip and Minsound add a MEMS
microphone to a camera-based tactile finger [10, 11]. Digit360
combines many modalities into a compact fingertip, including
a camera, IMU, MEMS microphones, barometers, temperature
sensors, and gas sensors [12].

All of these are valuable platforms for multimodal, dynamic
manipulation. The primary innovation of our work is the
exploration of multi-taxel PVDF in a multimodal finger.
Notably, multi-taxel PVDF provides distributed taxel sensing
across the finger, rather than only a few dynamic and very
high frequency (> 1 kHz) transducers.

4) On-robot RL fine-tuning: RL has proven to be an
effective approach for policy adaptation and improvement.
A growing line of research [30–32] explores using RL to
fine-tune pretrained policies directly on physical robots,
thereby bridging the gap between offline training and real-
world deployment. SERL [33], an open-source software
suite, supports on-robot RL through classifier-based rewards
and human-labeled sparse signals. DPPO [34], which fine-
tunes diffusion-based policies on real hardware, demonstrates
the potential of combining generative policy architectures
with on-robot optimization. In this work, we integrate semi-
sparse human reward labels with dense tactile-based rewards.
This hybrid formulation leverages the efficiency of human
guidance while grounding the learning process in rich contact
information, enabling more reliable improvement of base
policies during real-world fine-tuning.

III. SENSOR DESIGN

SpikeATac is a multimodal tactile fingertip. Its core feature
is a 16-taxel PVDF array which provides very high sensitivity
to high frequency events, like making and breaking contact,
extrinsic contact, and vibrations from surface textures. The
PVDF is embedded near the surface of the finger’s elastomer
(Fig. 1) in order to be sensitive to these types of signals
while being isolated from structural vibration. This design
allows us to complement the dynamic PVDF by embedding a
number of commercial off-the-shelf (COTS) capacitive taxels
deeper under the surface in order to provide a static pressure
response. Lastly, a 3-axis accelerometer acts as a secondary
dynamic modality and is connected to a “nail” feature for
surface exploration; however, we do not make use of this
feature in this study.

PVDF produces charge proportional to applied strain. We
use charge amplifiers to measure the charge generated at each



electrode, therefore measuring applied strain. However, the
feedback resistor of the charge amplifier provides a discharge
path, creating high-pass filter behavior. A critical part of our
work is that this configuration allows the PVDF to be very
sensitive to transients without permanently saturating. See
Section III-B for more electronics details.

The total material cost is US$365, dominated by the COTS
capacitive pads (US$263 for seven such sensors alone).

A. PVDF Fabrication

The PVDF stack is a flexible, transparent piezoelectric film
with metal on both sides forming 16 capacitor units. The
taxelized side, fabricated using photolithography, contains
pads, traces, and alignment marks. The common ground side,
fabricated using a shadow mask, contains a single pad.

Each substrate is 4.5 cm x 4.5 cm x 100 µm thick pre-poled
PVDF (PolyK). We sonicate the PVDF substrates for 15 min.
in isopropyl alcohol and then rinse in deionized water to clean
the surface before fabrication. A metal stack of 20 nm of a
chromium adhesion layer and 200 nm of gold is deposited
in a physical vapor deposition (PVD) system (Angstrom)
with electron-beam evaporation. Then, we spin-coat positive
photoresist (S1805, Dow) onto the sample. Using a photomask
written with laser lithography (Heidelberg Systems), the
photoresist is patterned by a mask aligner system (SÜSS).
The photoresist pattern is developed in AZ 300 metal ion
free developer, then transferred to the chrome/gold stack with
two wet etches (Transene). This completes the taxelized side
of the sample. We deposit the common ground plane in a
PVD system through a shadowmask, with the same metal
stack as the taxelized side.

To prepare the samples for SpikeATac fabrication, we cut
the samples to the desired shape using alignment marks in
the pattern. We use copper tape and a low-temperature curing
silver paste (Micromax) to short the ground plane to a ground
trace on the taxelized side which goes to the connector. Finally,
the sensors are hot bar bonded to an flexible printed circuit
(FPC) cable using an anisotropic conductive film (Hitachi)
as the conductive interface. The FPC connects to a port on
the printed circuit board (PCB) described in the next section.

B. Electronics Design

The “on-finger” electronics consist of a 2-PCB stack housed
within the finger. The PCBs are connected with board-to-board
connectors (Molex SlimStack) and handle all amplification
and sampling. Flat flexible cable (FFC) ports interface with
the capacitive sensor tails and the PVDF’s FPC cable. A
capacitance-to-digital converter (CDC, AD7147) samples the
capacitive sensors. The stack also contains the three-axis
accelerometer (MC3479).

PVDF’s high impedance output requires careful electronics
for sensitive, low-noise signals. Each of 16 PVDF signals
are passed through a charge amplifier (Rf = 1.2GΩ, Cf =
22pF ) using a high impedance JFET op amp (AD8643), then
sampled with an analog-to-digital converter (ADC, ADS7953),
biased to 2.5V. Our configuration provides a charge to voltage

Fig. 2: The PVDF fabrication process along with a photo of the finished
sensor attached to the PCB stack with an FPC cable.

gain of − 1
Cf
= − 1012

22
, high-pass filter cutoff frequency of

1
2πRfCf

= 6.0Hz, and a time constant of RfCf = 30ms.
The on-finger PCB stack is connected to an “off-finger”

Teensy 4.1-based control board and communicates using serial
peripheral interface (SPI). The control board controls up to
4 SpikeATacs and 4 Dynamixel chains and is what we use
in all of our experiments. The Teensy communicates with a
personal computer (PC) over USB using micro-ROS. When
running only SpikeATacs, the PVDF is sampled at 4 kHz, the
accelerometer at 1 kHz, and the capacitive sensors at 40Hz.

C. Complete SpikeATac Fabrication

Finger fabrication contains 4 steps: mold preparation,
skeleton preparation, casting, and PVDF layer application.

1) Mold Preparation: Half of a two-part mold (Clear V5
resin, Formlabs; washed and 15 min./60 ○C UV cure) controls
the front finger surface and contains a feature to create a
1.5mm indentation on the finger surface for the PVDF. Once
per mold, we use a brush to apply 2 layers of Inhibit X
(Smooth-On) to prevent cure inhibition [35] (outgassing each
coat for 30 min). The other half of the mold (PLA) controls
the back of the finger geometry. At every use, we spray a thin
coating of release agent (EaseRelease200) onto both molds.

2) Skeleton Preparation: A rigid skeleton forms the
structure of the finger (Grey V5 resin, Formlabs; washed
and 15 min./60 ○C UV cure). After inserting pocket nuts, we
adhere 7 capacitive sensors (Singletact, 8mm/10N model,
PPS) onto the skeleton using double-sided tape (300LSE,
3M). We route the Singletacts’ 50mm tails into the skeleton’s
internal space and connect them to the PCB’s FFC ports. We
apply 2 coats of Inhibit X to the skeleton (outgassing each
coat for 30 min.), followed by 1 coat of silicone primer
(SS4120, Momentive) to encourage bonding.

3) Casting: We attach a JST cable, carrying power and SPI
buses to the control board, to the on-finger PCB. We suspend
the skeleton in the mold by fastening the PLA negative mold
to the back of the skeleton (M1.6 screws), which also fixes the
PCB stack in its permanent position. We assemble the mold
with screws and an O-ring. We mix and degas Ecoflex 00-50
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Fig. 3: PVDF, capacitive, and ATI Gamma responses when probing with
a hemispherical indenter (d = 6mm, see Fig. 4) at two linear probe
speeds: 1mm/s (left) and 10mm/s (right). We test when under a moderate
touch condition (∼3.5N), light touch condition (minimal contact established
visually), and when approaching but not touching. Bottom-center PVDF
and capacitive taxels are shown (location 8 on Fig. 4). ADC counts are
normalized to the full measurement range; CDC counts are normalized to
just above the moderate touch’s maximum response. We note that, at the
higher speed, PVDF can detect light contact that the other sensors cannot,
or detect contact earlier than the other sensors.

elastomer (Smooth-On) and pour it into the mold, allowing
it to cure at room temperature for 8 h.

4) PVDF Layer Application: Applying PVDF is nontrivial
due to its imperfect fit on the finger’s multi-curved surface and
the difficulty of achieving strong PVDF/elastomer adhesion.
We first adhere the PVDF to a flat, 0.5mm thick Ecoflex
00-50 elastomer sheet of the same shape (Sil-Poxy, Smooth-
On). After curing, we adhere this elastomer/PVDF stack into
the finger surface’s indentation (Sil-Poxy). We find that this
2 step process provides some forgiveness in the alignment
to the finger surface and provides improved adhesion as the
problematic elastomer/PVDF interface is cured completely
while flat. Finally, we paint thin layers of Ecoflex 00-50 on
top of the PVDF to form a thin layer (∼3 coats).

IV. CHARACTERIZATION AND SENSITIVITY ANALYSIS

To characterize the signal response of the different modal-
ities, we mount the sensor on an ATI Gamma 6-axis
force/torque (F/T) load cell (SI-130-10 calibration) and probe
it with a hemispherical indenter (d = 6mm) on a linear probe
at 1mm/s and 10mm/s. The finger is probed in 3 conditions:
moderate touch (∼3.5N), light touch (probe just
barely makes visual contact), and approach only (probe
stops 0.5mm away from finger. Sensor responses are shown
in Fig. 3.

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

1 2 3

4 5 6

7 8 9

Fig. 4: Heatmaps of the maximum absolute value of the zeroed PVDF
response from each taxel (i.e., a dark taxel represents an increasing or
decreasing signal) depending on indentation location, showing the spatial
information carried by the PVDF taxels.

We note that, at the slow speed, PVDF provides a lower
response and the signal dies away quickly. In other words, at
this probe velocity, the high-pass filter behavior of the charge
amps dominates the response. However, for faster incoming
speed, the PVDF signal is rich in information: PVDF is very
sensitive to the initial contact, spiking to saturation even
at very low force. In fact, the PVDF signal starts to spike
before the load cell or capacitive sensors move above their
noise floor, showing that the PVDF’s minimum detectable
force at this probe velocity is below the load cell’s noise
floor (1 standard deviation of noise is 20mN). The light
touch condition also supports this conclusion, as the PVDF
responds and the load cell does not.

The approach only data shows that the PVDF also
exhibits a small response to object proximity, largely due to
static charge, but this effect is small in comparison to true
contact signals, even for light touch. We empirically
observe that the proximity effect increases after adding the
elastomer layer.

The taxelized nature of our PVDF sensor is a key feature
of this work. To test its behavior, we also probe the finger in 9
different locations to evaluate spatial information contained in
the PVDF signals. These indentations are ∼1.5N and normal
to the surface (via different finger mounts). A heatmap of the
maximum absolute signals from each taxel (Fig. 4) shows
that the PVDF provides strong spatial information. We note
that the traces routed on the sample also contribute signal. For
example, the indentation at position 9 (bottom right) activates
the upper right taxel (Fig. 4) because the upper right taxel’s
trace is routed near position 9 (see trace layout in Fig. 2).

V. FAST AND DELICATE GRASPING

Utilizing PVDF’s ability to quickly and sensitively detect
the onset of contact, we study SpikeATac’s ability to react



Fig. 5: (a) Setup of the fast and delicate grasping experiment, in which we
command a slow, medium, or fast velocity to the gripper and stop after
contact is detected, comparing PVDF-based and capacitive-based detection
(Tab. I). (b) After 15 trials, the more fragile object (seaweed) is noticeably
crumpled when using capacitive-based stopping, but appears nearly untouched
in the PVDF condition at fast velocity. In fact, in the medium and fast
conditions, the capacitive method often failed to detect contact at all. (c)
Raw signals from one finger show a distinct PVDF spike at seaweed contact,
while the capacitive signal does not reliably rise above its noise floor (each
line shows an individual taxel from one of the two fingers).

fast enough to effectively stop on impact while moving
at high speed. Moving fast while still being delicate is a
valuable skill for robots moving quickly in unstable or safety
critical environments and to grasp fragile objects without
necessitating slow, time consuming movements. We thus
compare how different sensing modalities enable this ability.

A. Experiment Setup

We mount two SpikeATacs on a custom parallel gripper
containing a servo motor (XM430-210, Dynamixel) and a
linkage mechanism controlling the linear motion (Fig. 5).
We mount the gripper on a stand and place objects on a
table between the fingers. During each grasp, we send a
velocity command to the Dynamixel’s velocity controller
(P=300, I=3500), followed by a stop command (velocity =
0) once contact is detected (see below for details on contact
detection). We check for the stop condition at 4 kHz (3 kHz
for slow velocity due to Teensy memory limits), with PVDF
and capacitive data updating at 4 kHz and 40 Hz, respectively.
The PVDF has a median filter of width 3. The capacitive
data is not filtered, however we remove occasional outlier
values introduced by SPI bus noise.

We compare two methods of contact detection, one using
PVDF, and the other using the capacitive sensors. In each
case, we selected what we found to be the best performing
method. For PVDF, we found a difference-based method to
be the most effective, as the PVDF responds with sharp edges
for the velocities investigated. However, we found this not to
be the case for the capacitive signal, which does not respond

TABLE I: Distance traveled by the gripper (mean and stdev) beyond start
of contact (smaller distance = faster stop) over 30 trials as illustrated in
Fig. 5. We find that PVDF enables faster stopping, especially for the fragile
object (seaweed), whereas the capacitive sensors are not able to reliably stop
before crushing the object in the medium and fast conditions.

Sponge Seaweed

Velocity Slow Medium Fast Slow Medium Fast

Cap. (mm) 0.8±0.4 1.9±0.7 3.7±0.5 13.3±2.3 – –

PVDF (mm) 1.2±0.2 1.2±0.4 1.7±0.1 3.6±3.8 1.9±0.6 2.4±0.4

as sharply, and we therefore selected a method which looks
at the average signals compared to a static baseline.

● PVDF Method: Contact occurs once ≥ 2 PVDF taxels
show a current–previous difference above a threshold.

● Capacitive Method: Contact occurs when the mean of
the seven capacitive taxels moves beyond a threshold.

In each case, we chose thresholds empirically to be just
above the noise floor and such that the motor doesn’t stop
prematurely due to noise at the movement start.

The methods above are only for the initial contact detection
of either finger. In both methods, to ensure a stable grasp, we
follow the contact detection with a slow movement that stops
when the mean of all capacitive values passes a second, object-
specific threshold. For the PVDF and capacitive methods,
respectively, we use a threshold of (40, 80) and (5.5, 6.5)
counts for (finger 1, finger 2). We use a capacitive threshold
of 3 (seaweed) and 5 (sponge) counts for the stable contact
adjustment.

To run the experiment, we command one of three velocities
to the motor and grasp one of two experimental objects: a
sponge or seaweed (nori) sheets. Once contact is detected, the
measured motor velocity at that timestep is recorded and the
stop command is sent, followed by adjustment with capacitive
feedback. We then record how far the gripper traveled after
the ground truth contact point (inferred from object width),
as well as the linear velocity of the gripper near the contact.

We run each of 12 experiments (two objects, two methods,
three velocities) for 30 trials, verifying that the object is in a
stable grasp at the end of each trial. Commanded velocities
are the same for the two objects, however due to different
object width, actual average achieved velocities were (91, 90)
(slow), (180, 172) (medium), and (281, 180) mm/s (fast)
for the (sponge, seaweed). We replace and remeasure the
seaweed for each of six conditions.

B. Results

The sponge provides a quantitative comparison between
the two modalities as it is deformable but firm enough that
both methods can reliably grasp it gently (Tab. I). While there
is little difference between methods at the slow velocity, the
difference at higher velocity is apparent and consistent. PVDF
allows the gripper to respond faster upon initial contact at
the high velocities than when using capacitive alone. These
results are consistent with the expected behavior given that
PVDF’s response is faster and more sensitive.



The results on the more fragile object (seaweed) are more
striking. Over 30 trials at each speed, grasping with the
PVDF sensors succeeded every time (0/30 crushed objects
at each speed). In contrast, grasping with capacitive sensing
succeeded at slow speeds (0/30 crushed objects) but failed
often at medium and fast speeds (20/30 and 23/30 crushed
objects, respectively). Additionally, the seaweed sheet after
the high velocity PVDF condition appears nearly untouched.
Due to the PVDF’s high pass filter behavior and detection
algorithm, the faster we move with PVDF the more sensitive
it will be. An illustration of the seaweed sheets after 15 trials
is provided in Fig. 5.

We note that we cannot rule out proximity signals caused
by static charge contributing to the PVDF’s contact detection.
However, signals caused by proximity tend to be small
relative to contact signals (Fig. 3). The sharp edge and large
magnitude in the raw PVDF data (Fig. 5) and consistent
stopping behavior suggest the sensing of the contact event
itself plays a critical role.

Finally, we use the fast grasping capability demonstrated
here to grasp and pick up a wide set of delicate objects. See the
supplementary video for examples (also available for conve-
nience at the anonymized address https://spikeatac.github.io).

VI. LEARNING DELICATE OBJECT IN-HAND ROTATION

So far, we have focused on standalone characterization of
SpikeATac, as well as its integration with a parallel gripper
for fast yet delicate manipulation. However, a traditional
limitation of complex tactile sensors is the difficult integration
in fully dexterous, multifingered manipulation. This is partic-
ularly true for current data-driven sensorimotor policies, for
example for in-hand object re-orientation, which often train
in simulation [36–38]: if a sensor provides highly complex
signals which are difficult to simulate, how can it be used
for learned motor control?

To address this challenge, we integrate SpikeATac into a
dexterous, four-finger robot hand, and use a reinforcement
learning from human feedback (RLHF) pipeline (Fig. 6) that
is designed for fine-tuning behaviors on the real robot using
raw sensor signals. To demonstrate SpikeATac’s sensitive
and multimodal capabilities, we also tackle the problem
of in-hand rotation via finger gaiting with only tactile and
proprioceptive information. However, we make the problem
even more difficult by extending it to fragile objects. To the
best of our knowledge, this ability has not been previously
shown in the literature.

A. On-Robot RL Fine-tuning for Behavior Improvement

At a high level, we start with a base policy πIL that
operates on raw sensor signals from our robot. To obtain
πIL, we train a behavioral policy in simulation via RL using
a highly simplified, binary contact signal (touch vs. no-touch).
We transfer this policy to the real robot using standard
domain-randomization, and use it to collect a number of
demonstrations on our real platform, which are in turn used
to train a base policy πIL via imitation learning.

[q0,q1,…,q11][q0,q1,…,q11]
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Fig. 6: Policy learning pipeline using on-robot RLHF in conjunction with
imitation learning to fine-tune a control policy using real sensor data.

While πIL works well on hard objects (shown in our
supplementary video), it immediately fails on fragile ones,
as it has been trained with rigid objects and lacks the ability
to produce delicate touch. We thus fine-tune it using RL,
specifically Soft Actor-Critic [39], on raw sensor data acquired
from our sensor. This pipeline shows how the highly-sensitive,
difficult-to-simulate sensor signals can be integrated into
learning-based manipulation.

To initialize RL fine-tuning, we set π0
RL = πIL and deploy

it on the real robot to collect data. To enable effective
data collection for training the Q-function, we introduce an
exploration strategy by injecting Gaussian noise with small
standard deviations into the distal joints. At each iteration,
we use the most recent policy πn

RL to collect a dataset Dn
RL.

For training, we aggregate this RL dataset with the original
imitation learning dataset, i.e., DIL ∪Dn

RL.
For RL fine-tuning, we incorporate two types of reward

signals. The first type consists of task-specific rewards rtask
provided by human annotators. For each trajectory, a human
labels segments as “good” if the object is rotating and “bad”
otherwise. We refer to this as semi-sparse reward labeling.
Compared to sparse rewards, where only the final timestep
is labeled based on whether the agent achieves the goal, this
approach provides richer feedback across different parts of
a trajectory. At the same time, unlike dense rewards, our
reward labels do not require overly complex state estimation
or engineering in the real-world setup.

The second type of reward signals is derived directly
from tactile sensor observations. At a high level, our goal
is to encourage the agent to reduce excessive contact forces
(captured by capacitive readings) while increasing exploratory
contacts (reflected in a higher number of PVDF spikes, i.e.,
making and breaking contact with the object). Formally, the
tactile reward is defined as:

rtac = w1

i≤4

∑
i

1 [oicap ≥ 0.9] +w2

i≤4

∑
i

1 [∣oipvdf∣ > 0.8]

Here, w1 and w2 are constants (w1 < 0, w2 > 0). ocap
and opvdf are tactile sensor readings that are normalized
to the range of [0,1] using a sigmoid function, then scaled
and shifted to the range [−1,1]. i is the finger index. The



Fig. 7: Rollout of the fine-tuned policy at three time points. The base policy
π0
RL = πIL quickly crushes the paper object, while the fine-tuned policy

using raw SpikeATac signals is capable of long rollouts without damaging
the object.

combined reward for RL finetuning is r = rtac + rtask.

B. Observation and Action Space

We carefully handle raw PVDF sensor signals in the
observation because we do not want to discard high frequency
information in the sensor data. We sample the PVDF at
450Hz and capacitive sensors at 250Hz (capacitive internal
update rate is still 40Hz), while the policy runs at 20Hz
(sampling frequencies are limited by the bandwidth of the
microcontroller controlling the entire hand). The signals have
a median filter of width 5. A history buffer of 64 PVDF and
capacitive readings incorporates higher frequency information
into the policy at each lower frequency timestep.

The observation contains the length 64 history buffer of
sensor signals (16 PVDF signals and 7 capacitive signals per
each of 4 fingers) and the 12 joint encoder readings. The
action space is the hand’s 12 joint position set points for its
12 degrees of freedom (1 roll joint and 2 flexion/extension
joints per finger).

C. Results

To evaluate performance, we roll out the policy at each
iteration on a paper hexagonal prism (d = h = 40mm) and
paper cylinder (d = 40mm, h = 60mm) for 5 rollouts each.
We evaluate amount of rotation and destruction rate for each
policy (Fig. 8).

The initial π0
RL = πIL policy almost immediately crushes

the objects (Fig. 7), however through this learning pipeline
the policy learns to make visibly softer contacts over the
learning iterations, as evidenced by the object state after the
experiments (Fig. 8), while amount of rotation also increases.
See the supplementary video (also available for convenience at
the anonymized address https://spikeatac.github.io) for visual
results of improved rotation over learning iterations.

We compare RL fine-tuning results to an IL baseline that
is trained on all available demonstration data after all fine-
tuning iterations, with the IL baseline achieving 5.7 radians
rotation and 0.7 destruction rate, notably lower than the RL
fine-tuning results. We emphasize that the data we use for
the IL fine-tuning baseline is usually hard to obtain in an IL
setting, given the quick failures of the base policy. Here, we
filter the RL fine-tuning dataset using human labels and only
use the good trajectories for imitation learning.

These experiments show that this system and pipeline as
a whole enable this difficult, delicate task. We note that the
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Fig. 8: Average rotation amount and object destruction rate with each RL
fine-tuning learning iteration evaluated on a paper hexagonal prism and
cylinder (figure shows combined results). The images show examples of
objects after manipulation.

resulting policy in these experiments may be overfit to these
particular objects and object sizes, and that we also don’t
have a definitive analysis of what each sensor contributes.
Our primary takeaway, however, is that this pipeline, which
is designed for the real robot and is using real sensor signals
in the reward, allows effective use of SpikeATac data for new
data-driven capabilities, despite the sensor being, as of now,
very difficult to simulate.

VII. DISCUSSION AND CONCLUSIONS

Relative to other tactile sensing transducers, PVDF is a less
prevalent choice of tactile modality in the literature despite
its impressive sensitivity. This may in part be due to its
susceptibility to noise, as a very high impedance system,
and its cumbersome fabrication processes–the clean room
tools used in this work are not readily accessible to many
robotics-focused researchers.

A differential amplifier design and more advanced shielding
and mixed signal design will likely improve the PVDF’s
performance [40], which we plan to investigate in future
work. We note that in addition to sensitivity to static charge,
our sensor is also sensitive to how the system is grounded,
but we found that with proper grounding the sensor signals
were robust enough to enable all the experiments presented
here.

Additionally, although the clean room processes used
in this work make “democratizing” this sensor for the
research community challenging, they are standard fabrication
processes and should not be feared at scale. Screen printing
may also be another avenue for scalable fabrication. In
this vein, with careful implementation, we see PVDF as
a compelling tool for many-taxel dynamic tactile sensing.

Overall, we believe SpikeATac is a powerful platform
for studying multimodal tactile sensing and manipulation.
The sensor’s many-taxel PVDF enables fast and delicate
grasping. In conjunction with on-robot RL fine-tuning, we
can integrate its raw, difficult-to-simulate multimodal sensor
signals into complex learning-based manipulation policies that
show unprecedented capabilities, such as in-hand reorientation



of fragile objects. We believe that the combination of static
and dynamic tactile sensing, integrated into capable hands
and used in conjunction with powerful sensorimotor learning
methods, shows great promise for future advances in robot
dexterity.
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