
Task-Based Design and Policy Co-Optimization
for Tendon-driven Underactuated Kinematic Chains

Sharfin Islam∗†, Zhanpeng He∗‡, Matei Ciocarlie†

https://roamlab.github.io/tentamorph/

Abstract— Underactuated manipulators reduce the number
of bulky motors, thereby enabling compact and mechanically
robust designs. However, fewer actuators than joints means that
the manipulator can only access a specific manifold within the
joint space, which is particular to a given hardware configuration
and can be low-dimensional and/or discontinuous. Determining
an appropriate set of hardware parameters for this class of
mechanisms, therefore, is difficult - even for traditional task-
based co-optimization methods. In this paper, our goal is
to implement a task-based design and policy co-optimization
method for underactuated, tendon-driven manipulators. We first
formulate a general model for an underactuated, tendon-driven
transmission. We then use this model to co-optimize a three-link,
two-actuator kinematic chain using reinforcement learning. We
demonstrate that our optimized tendon transmission and control
policy can be transferred reliably to physical hardware with
real-world reaching experiments.

I. INTRODUCTION

Underactuated manipulators require a carefully designed
transmission, often tendon-driven, to take advantage of a
reduced number of actuators in the robot. Such designs range
from planar serial chains with relatively few links to complex,
hyper-redundant continuum robots [1–7]. In all of these cases,
being able to reduce the number of actuators means that
we can build smaller and more lightweight designs, place
actuation at more proximal locations in the chain, and take
advantage of passive compliance in the un-actuated degrees
of freedom.

However, the compromise of such designs is that, with
fewer actuators than degrees of freedom, underactuated
manipulators can directly access only a certain manifold
within the overall state space. This manifold, which con-
tains the set of obtainable states for a particular hardware
configuration, can be low dimensional and/or discontinuous.
These limitations affect our ability to plan controllers that
smoothly transition between various states to accomplish a
desired task. The process of tuning the hardware parameters
in order to ensure the set of accessible states matches the
desired task can be slow and cumbersome, particularly if, as
is often the case, changes in the design parameters of the
underactuated transmission have a counter-intuitive effect the
overall behavior of the robot.

Co-optimization, or the process of simultaneously searching
the space of both hardware and control, is a possible
solution to the problem of ensuring that a given hardware
design is capable of a desired task. Such methods have

∗Equal contributions. †Dept. of Mechanical Engineering, ‡Dept. of
Computer Science, Columbia University, New York, USA

Control
Policy

HW
Proxy

Task
performance

State
Motor

commands

Motors

Control and design
co-optimization

Underactuated
design parameters

Fig. 1: We optimize an underactuated, tendon-driven transmission
for kinematic chains. We formulate and parameterize a general
model for N links and M actuators. We apply our model to a three-
link, two-actuator tentacle that we co-optimize using reinforcement
learning (top row, left). We then validate our results on physical
hardware (right).

been attempted in the context of underactuated kinematic
chains, but often restricted to simulation [8–10], limited
validation of the simulated controller on real hardware [11],
or only implemented on single-actuator systems [12]. The
fundamental difficulty of such approaches lies in formulating
a co-design problem that a) enables the use of non-trivial
controllers or policies, b) can be solved to an acceptable
optimum point, c) guarantees that the final result can be
physically realized in real hardware, and finally d) ensures that
the optimized control policy also transfers to real hardware
without substantial loss of performance. This is a difficult set
of goals to achieve simultaneously, and, to the best of our
knowledge, no current method has done so for underactuated,
tendon-driven transmissions with multiple actuators.

In this paper, we start with an underactuated tendon
transmission model for general planar kinematic chains, which
can capture a diverse set of hardware configurations. We use
a forward model that captures the behavior of the system as
a function of design parameters and control inputs. We then
show that this model enables end-to-end co-optimization of
design and control policies for a specified task. To solve the
co-optimization problem, we adopt MORPH [13], a recently
introduced end-to-end co-optimization framework that uses a
proxy model to mimic the effect of hardware, and generate
gradients of hardware parameters w.r.t. tasks performance.
This allows us to learn both control and hardware parameters
to accomplish desired tasks. We then show that it is possible
to build a real robotic manipulator with this optimized
transmission, and validate that our optimized control policy
can be transferred reliably to real hardware.

An additional feature of our hardware design is that some
design parameters can be modified without requiring re-

https://roamlab.github.io/tentamorph/

assembly of the manipulator, and by using the same set
of fabricated components. This allows for different levels of
flexibility in robot behaviors. If the task requires explorations
of diverse behaviors, we can optimize all hardware parameters
to explore a large solution space. In the case that the task is
simpler, we can optimize only the easily adaptable parameters
to avoid reassembly. While in this paper we focus on a single
kinematic chain optimized for simple reaching tasks, our
directional goal to enable underactuated, tendon transmission
models that can be co-optimized along with their control
policies, which can in turn transfer to the real world. Overall,
the main contributions of this paper include:

● We formulate a model of underactuated, tendon-driven,
passively-compliant planar kinematic chains that enables
efficient end-to-end task-based optimization of the design
and control parameters.

● We show that the results of the co-optimization process
can be transferred to real hardware implementing the
optimized design parameters. The resulting robots can
then run the optimized control policy which also achieves
sim2real transfer in task performance.

● To the best of our knowledge, this is the first time that
task-based, policy and design co-optimization methods
have been demonstrated for underactuated manipulators
with multi-dimensional manifolds.

II. RELATED WORK

An underactuated manipulator is a mechanical system
composed of links and joints that has fewer actuators
than degrees of freedom [14]. The transmission of these
manipulators are often tendon-driven, as a single actuated
tendon can be routed to control multiple joints. Reducing the
number of bulky actuators enables designers to build more
compact and lightweight manipulators. Moreover, tendon-
transmission allow designers to dislocate the motors from the
joints. Dislocating the actuators reduces the inertia of the links
and makes it easier to make the manipulator robust to water,
dust, and other difficult environmental conditions [15]. With
so many practical benefits, a myriad of diverse underactuated,
tendon-driven manipulators have been proposed over the past
several decades.

There is an extensive history of underactuated manipulator
design. The first underactuated manipulator, Hirose’s soft
gripper introduced in 1978, was designed to softly capture a
diverse range of objects with uniform pressure [1]. Over time,
these manipulator designs became much more advanced and
their applications now extend to more robust and intricate
grasping behaviors [16–20]. Currently, there is extensive re-
search in the design and control of underactuated manipulators
for tasks even more dexterous than grasping, such as in-
hand manipulation [21–23].To realize these more advanced
capabilities, the tendon-transmission of these manipulators
had to be carefully designed, optimized, and further hand-
tuned. This process is cumbersome and time-consuming,
but necessary. Co-optimization methods are a possible tool
to help design these complicated mechanisms. With recent

advancements in reinforcement learning, co-optimization is
now more powerful than ever.

Recently, researchers have considered reinforcement learn-
ing for task-driven design and control co-optimization [24–
27]. The key of this line of work is to derive policy gradient
w.r.t both the control and design parameters. Chen and
He et al. [12] propose to integrate a differentiable model
of the hardware with a control policy to adapt hardware
design via policy gradients. A key limitation of this approach
is the requirement of differentiable physics simulation. In
cases when the forward transition cannot be modeled in a
differentiable manner, researchers propose methods to learn
design parameters in the input or output space of a policy.
For instance, Luck et al. [28] propose to learn an expressive
latent space to represent the design parameters and condition
a policy with a latent design representation. Transform2Act
[29] propose to have a transform stage in their policy that
estimates actions to modify a robot’s design and a control
stage that computes control sequences given a specific design.
Our hardware design is not differentiable. Hence, in this
work, we apply MORPH [13], a method that co-optimizes
design and control in parameter space that does not require
differentiable physics.

III. METHOD

We formalize our problem as follows. Our goal is to
build a kinematic chain (i.e., tentacle/trunk) robot that can
achieve flexible behaviors, such as reaching desired parts
of the workspace, while maintaining the practical design
benefits of underactuation. For this class of mechanisms,
the design parameters and controller for a given task are
innately coupled. Therefore, we take a task-based hardware
optimization approach to search for hardware parameters that
yield manifolds such that we can smoothly transition between
desired states.

Our method has three main components: 1) an under-
actuated, tendon-driven transmission design for compliant
kinematic chains; 2) a model that captures the forward
dynamics of our designed robot; and 3) an end-to-end co-
optimization pipeline that can directly learn the parameters of
the proposed design along with a control policy for a given
reaching task.

A. Transmission design

Our design, shown in Figs. 1 and 2, assume a kinematic
chain with N links driven by M motors. All motors are
located inside the base and actuate winches that are connected
to the joints via tendons. For each motor i, we denote the
radius of the actuator as RAi . We assume that each motor is
driving a tendon that traverses the entire length of the chain,
thereby helping flex every joint. We denote the length of each
link j as Lj . For a the corresponding joint j, each motor i
will wrap around a pulley. We use Rij

f to denote the radius
of the flexion pulley for this joint and motor pair.

We assume all actuators provide flexion forces, and the
transmission uses purely passive extension mechanisms. At
each joint, the mechanism features a passive elastic tendon

Flexion Tendon 1

Flexion Tendon 2

Elastic Extension Tendon

N-Link Serial
Chain

Actuated Winches

j-th Link

Flexion Tendon 2
Pulley

Flexion Tendon 1
Pulley

Extension Pulley

Routing
Idler

Elastic
Extension

Tendon

Fig. 2: Our flexible tendon-transmission design for compliant,
underactuated kinematic chains. In this design, N links are driven by
M actuated flexion tendons. We also implement a passive extension
mechanism, which we can precisely pre-tension. The parameters of
our transmission are all flexion tendon radii, extension tendon radii,
and elastic tendon pre-elongations.

that stretches over a pulley of constant radius (denoted by Re)
to provide a restoring extension torque. Each elastic tendon
can be pretensioned individually; we use lj

pre to denote the
pretensioning elongation of the passive tendon at joint j.

This mechanism has a number of desirable characteristics.
Underactuation leads to a small number of motors, and
placing all motors inside the base frees the links of the
kinematic chain from any motors or electronics. However,
the movement of the robot is non-trivial to define or control.
Critically, robot movement is determined not only by the
actuators but also by a number of design parameters. These
include all flexion tendon radii, extension tendon radii, and
elastic tendon pre-elongations. Furthermore, the ability of a
robot to reach specific points in its workspace is clearly also
determined by the lengths of the links. Our goal is to devise
a procedure capable of optimizing all these design parameters
while providing a policy for controlling motor movements in
order to achieve a specific task.

In addition, our proposed design makes some of the design
parameters easier to change than others. In particular, we
mount each elastic tendon on a linear slider mechanism.
The position of this slider is set by rotating a lead-screw,
thereby controlling the pre-tension elongations of the elastic
extension tendons to less than 1mm of precision. This means
that some of our design parameters (pulley radii, link lengths)
are more difficult to change, as they require a full reassembly,
while others (elastic tendon elongations) are easier to change
depending on the task. We want to leverage this ability in
our co-optimization procedure.

B. Forward actuation model for our transmission design

In order to enable a co-optimization routine for our
transmission design, we first need a forward actuation model
that relates the hardware parameters and the actuator inputs to
the resulting state of the manipulator. The input to this model
consists of the servo angle of the winches that control flexion

tendons, which we write as a column vector θA of size RM×1.
The next state is defined by the set of joint angles θJ of size
RN×1. In other words, the actuation model must predict joint
angles θJ as a function of the actuator commands θA, as well
as all design parameters described in the previous section.
We formulate this actuation model by searching for θJ that
minimizes the total stored energy, denoted by U , while still
meeting the constraints imposed by the rigid flexion tendons.

We begin our model by first formulating this constraint:
since the flexion tendons cannot extend, we know that the
tendons will either be in tension or accumulate slack. This
slack is a difference between the collective change in length
of the tendon due to the motion of the joints versus the change
in length due to servo-driven winch. The slack, therefore, is
a function of the flexion pulley radii, actuated winch radii,
and joint angles.

The flexion radii can be composed into a matrix of size
RM×N as follows:

RF =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RF11 RF12 ... RF1N
RF21 RF22 ... RF2N
...

RFM1 RFM2 ... RFMN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The radii of the actuated winches can be similarly com-
posed into a diagonal matrix of size RM×M .

RA =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RA1 0 ... 0
0 RA2 ... 0
...
0 0 ... RAM

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2)

With these matrices, we can now define a column vector
of the slack collected in the tendons (w).

w =RFθJ −RAθA (3)

The slack is important as it limits the set of obtainable states
for any given action. We know that the robot will settle at a
configuration in this set of states that will minimize the overall
stored elastic energy (U) [14]. This stored energy comes from
the preloaded elongation lpre of the elastic tendons, but also
the elongation due to joint flexion. The total elongation for
any j-th link (lj) can be written as follows:

∆lj = Reθj + lprej (4)

We can now pose the forward actuation model to solve
for the next state as θ′J = f(θJ , θA) relating the state to the
action as a numerical optimization problem: given θA,θJ ,

argmin
θJ

U = 1

2

N

∑
j=1

kl2j (5)

subject to w ≥ 0 (6)
det(diag(w)) = 0 (7)

Since the flexion tendons are in-extensible, the change in

(a) (b)

0.000

0.010

0.020

0.030

0.040

2.0
1.5

1.0
0.5

0.02.0
1.5

1.0
0.5

0.0

Joint #0 Joi
nt

#1

En
er

gy

Satisfied manifold
Unsatisfied manifold

Joint #0 Joi
nt

#1

En
er

gy

0.000

0.010

0.020

0.030

0.040

2.0
1.5

1.0
0.5

0.02.0
1.5

1.0
0.5

0.0

Changing design
parameters, actions

Fig. 3: Illustrations of our optimization-based forward actuation
model. (a) and (b) show the global energy landscape (z-axis). The
yellow regions are manifolds that satisfy our constraints (Eq.6 and
Eq.7). The red arrows in (a) represent optimization steps (Eq.5)
that find the energy minimum inside the manifold. Changing design
parameters and control actions result in a change in the manifold.

length of the tendon at the joints must always be greater than
the change in length of the tendon due to the actuator. The
slack, therefore, must always be greater than zero, as shown
in Eq. 6. Additionally, if the joint angles are non-zero, the
tendon must always be in tension, and therefore, at least one
element in w⃗ must be zero. This constraint is shown in Eq.
7. We enforce these constraints While minimizing the total
stored energy given in Eq.5,

Actions and hardware parameters do not change the global
energy landscape, but instead, the section of the landscape that
satisfies our constraints (see Fig.3). Hence, optimizing control
θA and hardware parameters (e.g., RF and Re) is finding
appropriate energy manifolds whose minimum energy states
are ones we want to visit for task completion. There exists
some combination of hardware parameters that ensures these
manifolds are continuous are have a clear energy minima.
Arriving at this specific set of parameters relies on observing
how the changes in parameters affect the most suitable control
strategy for solving a given task. Finally, in this work, we
focus on optimizing the following set of hardware parameters:
ϕ = (RF, lpre, L).

C. Task-aware co-optimization of design and control

Equipped with the forward actuation model described in
the previous section, we can now focus on the problem
of co-optimizing a set of design parameters and a motor
control policy for a given task. Using a standard reinforcement
learning (RL) formalism, we model each task as a Markov
Decision Process (MDP), or a tuple (S,A,F ,R), where S is
the state space, A is the action space, R(s,a) is the reward
function, and s′ = F(s,a) is the forward transition model,
where s,s′ ∈ S, and a ∈ A.

In this work, we use a state vector s containing the
joint angles θJ , motor positions θA, and 2D end-effector
positions xe.e.. Actions for a control policy are motor
commands θA. The reward function R(s,a) encodes the
desired performance; for example, if we want the end-
effector to reach a specific point, the reward will comprise
a negative distance to the goal. For each task, we want to
find the parameters of a control policy πθ as well as the
design parameters ϕ that optimize task performance, which
is evaluated by its expected returns: E[∑Tt=0R(st,at)].

The state transition model F requires additional consid-
erations. As described in Section III-B, it consists of an
optimization-based model f whose behaviors are determined
by some of the hardware parameters from ϕ. However, this
model is non-differentiable and, therefore, can not be used
in a standard policy gradient optimization routine.

To co-optimize the hardware design with control, we apply
MORPH [13], an end-to-end co-optimization method that
uses a neural network proxy model hnn to approximate the
forward transition F . The proxy model and a control policy
are co-optimized with task performance while asking hnn

to be close to F . In this work, instead of mimicking just
the forward transition, we consider the effect of hardware
design parameters in task space. Hence, we ask the hardware
proxy to approximate both the forward transition and forward
kinematics: qϕ = f ○TFK . Note that our hardware parameters
ϕ are encapsulated in different parts of q. For example, link
lengths only affect forward kinematics, while pulley radii
and preloaded tension govern the behaviors of f . Hence, the
overall optimization objective is:

max
θ,ψ

Eπ,hnn[
T

∑
t=0

R(st, θA)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
task performance

+α∣∣hnn(θJ , θA) − q(θJ , θA)∣∣2
´¹¹¸¹¹¹¶

hardware constraint

]

(8)

where α is a constant number.
To derive explicit hardware design parameters, for every

N epochs, we also use CMA-ES [30] to search ϕ to match
the updated hardware proxy hnn:

min
ϕ
∣∣hnn(θJ , θA) − qϕ(θJ , θA)∣∣2 (9)

The final algorithm is an iterative process: We first co-
optimize the hardware proxy and the control policy to improve
task performance, then extract explicit hardware parameters
that match the current version of the hardware proxy.

IV. EXPERIMENTAL SET-UP

A. Design and control co-optimization

To evaluate our method, we optimize the aforementioned
design with several goal-reaching tasks, i.e., reaching a goal
location in 2D with its end-effector. We have three sets
of experiments demonstrating three ways to utilize our co-
optimization pipeline for flexible motor skills:

1) Goal reaching via re-fabrication: We adapt all design
and control parameters to different goals but only train
each policy for a single goal. In this specific experiment,
reaching multiple goals requires the re-fabrication of a
real robot since the link length and pulley radii cannot
be changed after assembly without fabricating new parts
and reassembling the manipulator.

2) Goal reaching via online hardware updates: In this
experiment, we optimize the hardware design in two
stages: we first optimize design parameters that require
re-fabrication (i.e., pulley radii) to a specific goal. Then,
we fix all parameters except the pre-tension elongation
and co-optimize for a different goal.

Environment Steps

Av
er

ag
e

Ep
is

od
e

R
et

ur
ns

Co-optimization
Fixed design

Fig. 4: Average episode returns for goal reaching via re-fabrication.

3) Goal reaching via multi-goal control policies: We
optimize all parameters to learn a shared design and
control that can achieve multiple goals with a single
control policy. In this case, we do not need to adapt any
of the hardware parameters to reach multiple goals after
the policy is trained.

The first experiment is our design’s most limited application
due to the need for re-fabrication. However, it demonstrates
that our transmission can be optimized to reach different
areas of the fully actuated workspace. We also train control
policies with fixed initial design parameters to compare task
performance. Fig.5 shows the goal distribution for the first
experiment set. The second set of experiments leverages a key
aspect of our design - the ability to easily adapt some design
parameters without having to go through tedious re-design,
fabrication, and assembly. For this second set, we keep the
same pulley radii and only optimize the pretension elongation
for a goal different from the first experiment. In the first
and second experiments, we use the state space described in
Section.III for inputs of our control policy.

The last experiment demonstrates that our robot, while
being underactuated, can achieve different goals with the same
design parameters and control policy—if the desired goals are
not too far away. The state space is extended from the first
two experiment sets with the addition of the goal locations.
To establish the specific set of goals we hope to achieve, We
sample goals randomly around a center location (−0.16,0)
within a radius of 50mm. For evaluation, we randomly sample
20 goals and execute the policy 10 times for each goal. This
experiment requires re-assembly of the entire tentacle as we
optimize all the design parameters. Therefore, we only run
this experiment in simulation.

For all experiments, We use a dense reward function: r =
∣∣xe.e. − xgoal∣∣2 + b, where xe.e and xgoal are the position of
the end-effector and the goal, b is a task completion bonus
that is provided when the distance of E.E. and the goal is
less than 2mm. We initialize the hardware parameters to
be RF1 = [0.005,0.005,0.005] and RF2 = [0.005,0.01,0.02],
L = [0.8,0.8,0.8] and lpre = [0,0,0]. The units of all these
parameters is meters.

(a) (b) (c)
Fig. 5: Qualitative results for optimizing underactuated robots to
reach different goals in simulation (goal reaching via re-fabrication).
(a) shows original design and goal locations. (b) and (c) show two
optimized underactuated tentacles reaching different goals.

Fig. 6: Example of policy rollout on the real robot. Top: real robot
rollout. Bottom: comparisons between simulated robots and real
robot tracking. The real robot is shown in purple in the bottom row
of figures.

B. Hardware implementation and sim-to-real transfer

Shown in Fig.1 and 6, we physically build the manipulator
with the optimized pulley radii in the first two experiment
sets. To simplify both the fabrication and assembly, we set
(Re) = 15mm. Our transmission in this robot is driven by two
Dynamixel XM-430 servos that sense and control the angle
(θa) of the actuated winches. During our experiments, we fix
the manipulator to a experimental rig, which has a mounted
camera looking down on the robot. The camera is used in
lieu of joint angle encoders, as we calculate the joint angles
of our robot (θJ)by tracking the pose of AR tags attached
to our robot as shown in Fig. 6. We use the joint angles
collected from the AR tags to execute closed-loop policies
for the first two experiment sets. In this case, we close the
loop by taking observations from the real robot during policy
execution and use our optimized control policy to determine
the next action. In addition to closed-loop policies, we also
simply train a control policy to reach the goal in simulation,
and then directly transfer this policy to the real-robot without
adjusting any of the actions during runtime.

We run both the first and second experiment set on the real
robot hardware for both closed-loop and open-loop policies.
In the next section, we evaluate the accuracy and precision
over 20 samples on the real robot for each set of data.

V. RESULTS AND ANALYSIS

A. Co-optimization results

Our results from the first set of experiments show that
our model learns different design parameters for different

TABLE I: Final Distance to Goal Position of Optimized Robots
for real-world reaching tasks. Open and closed represent open-
loop and closed-loop execution, respectively. All units of distance
in this table are mm, and each value is calculated for 20 samples.

Avg. distance to goal Std. distance

Stage Open Closed Open Closed

Pulley radii 13.27 6.30 7.28 2.87
Preloads 21.27 12.97 7.26 4.39

TABLE II: Quantitative results for sim-to-real hardware transfer.
Average error between real hardware states and simulated states
for both open-loop and closed-loop policy rollouts. Each value is
calculated over a total of 40 samples.

Open-loop Closed-loop

Joint angle (rad) 0.176 0.0932
End-effector position (m) 17.523 10.877

goal locations with an error 1.80mm. As shown in Fig.5, our
model can adapt hardware parameters to different goals. The
initial design can achieve only 1 out of 9 goals, achieving
much lower average returns than our method (Fig.4) when we
only learn a control policy with a fixed design. Although the
robot’s workspace may contain the goal, the initial hardware
parameters make learning a stable control policy difficult.
After the design parameters are optimized, the control policy
can learn a stable action sequence to arrive at the goal position.

In the second experiment set, our results show we can
optimize only the pulley radii to achieve one goal (0.13,0.3)
with 1.8mm error in simulation. Then, we fix the pulley radii
and only optimize the preloaded extension to another goal
(0.16,−0.08) with 3.2mm error in simulation. Using derived
design parameters, we build a real tentacle robot and directly
transfer the control policy from simulation to the real world.

Our results show that the transfer policy achieves, on
average, 6.3mm error to the goal location. During training,
since the control policy is co-optimized with the non-
stationary hardware proxy, it is robust to hardware parameters
perturbation. We test both open- and closed-loop performance
on the real robot. In the open-loop test case, we record action
sequences executed from the simulation and directly execute
them on the real robot. The robot can touch the goal with
12.97mm errors.

B. Sim-to-real accuracy

A key focus in our paper is the ability to transfer the
optimized design and control policy to physical robotic
hardware. We achieve accurate transfer in terms of task
performance, as shown in Table I. Our closed-loop results
show that taking observations directly from the real robot
improves task performance substantially. The closed-loop
policies’ standard deviation of the distance to the goal is much
lower, which indicates that they yield more consistent results
in the real world. Additionally, the average final distance to
the goal for the closed-loop policies is much lower, indicating

(a) (b)

0.000

0.010

0.020

0.030

0.040

2.0
1.5

1.0
0.5

0.02.0
1.5

1.0
0.5

0.0

Joint #0 Joi
nt

#1

En
er

gy

Satisfied manifold
Unsatisfied manifold

Joint #0 Joi
nt

#1

En
er

gy

0.000

0.010

0.020

0.030

0.040

2.0
1.5

1.0
0.5

0.02.0
1.5

1.0
0.5

0.0

Fig. 7: Manifold comparisons before (a) and after (b) hardware
optimization. Each grid represents the constraint satisfaction (yellow
for constraints satisfied, dark purple for not satisfied) of its center.
We set the joint angles of #2 to be 0 for visualization purposes.

higher accuracy. Our policy is robust to actuation errors by
reasoning about the current robot state and producing actions
that correct its errors. In Table II, we calculate the average
difference between the real robot state and the simulated
robot state for both the closed-loop and open-loop sets of
experiments. The average error in joint space for closed-
loop policy execution is about half the error for open-loop
execution. Similarly, the average distance between the real
and simulated end-effector positions for the entire action
sequence of each experiment is much lower for closed-loop
policies.

C. Energy manifold optimization

Our forward model is an optimization-based model. Each
forward step requires many optimization steps to find a global
energy minimum, which is crucial for accurately simulating
our robot. Each set of hardware parameters, along with
a control action, corresponds to a manifold in the energy
landscape. Although the global energy landscape does not
have any local optima, a manifold can be discontinuous and
has multiple local minimums. This introduces difficulties
for optimization and constrains our choice of optimization
algorithm to global optimization (e.g., genetic algorithms).
However, given the time budget, global optimization can
be inefficient and slow down our simulated robot since it
generally searches in a large state space.

As mentioned in Section III-B, when we optimize the
control and hardware parameters of this robot, we optimize
the manifold for energy optimization. Our experiments show
that our co-optimization process results in an energy manifold
that is easy to learn by task. As shown in Fig.7, the
original hardware design parameters provide manifolds that
are discontinuous, spread in different regions in the energy
landscape, and have several local minimums. After MORPH,
the resulting manifold (see Fig.7b) is a continuous and smooth
manifold. To further analyze the optimized manifold’s effect,
we apply Sequential Least Squares Programming optimizer
(SLSQP) [31], a local optimization algorithm with a time
budget of 500 optimization steps and 100 random actions, to
both the unoptimized and optimized manifolds and compare
their results to those of a global search algorithm implemented
in-house. When the hardware is unoptimized, given the same

time budget, the simulated results have a much higher error
(0.42) than the optimized hardware design (0.18). This means
that the resulting manifold of our optimization is more suitable
for fast simulation with local optimization.

VI. CONCLUSION

In this work, we present a method for co-optimizing the
design and control of underactuated kinematic chains. The key
to our approach is an optimization-based forward actuation
model that effectively captures the behavior of our robot
design, and a co-optimization pipeline is capable of learning
with non-differentiable physics. Our experimental results from
simulation and the real world demonstrate that our design,
along with the flexibility provided by hardware optimization,
results in flexible robot capabilities while enjoying the benefits
of underactuation. A key limitation of our current work is the
task complexity. While being general, our forward actuation
model assumes quasi-static, making contact-rich tasks difficult.
In future works, we aim to extend our work to more complex
tasks. Another future direction is to further utilize our online
adaptable design and explore novel mechanisms to make part
of the design adaptable.

REFERENCES

[1] Shigeo Hirose and Yoji Umetani. “The development of soft
gripper for the versatile robot hand”. In: Mechanism and
Machine Theory 13.3 (1978), pp. 351–359. ISSN: 0094-114X.
DOI: https://doi.org/10.1016/0094-114X(78)
90059- 9. URL: https://www.sciencedirect.
com/science/article/pii/0094114X78900599.

[2] Matei Ciocarlie and Peter Allen. “Data-driven optimization
for underactuated robotic hands”. In: 2010 IEEE International
Conference on Robotics and Automation. 2010, pp. 1292–
1299. DOI: 10.1109/ROBOT.2010.5509793.

[3] Matei Ciocarlie, Fernando Mier Hicks, and Scott Stan-
ford. “Kinetic and dimensional optimization for a tendon-
driven gripper”. In: 2013 IEEE International Conference
on Robotics and Automation. 2013, pp. 2751–2758. DOI:
10.1109/ICRA.2013.6630956.

[4] Angus B. Clark, Lois Liow, and Nicolas Rojas. “Force
Evaluation of Tendon Routing for Underactuated Grasping”.
In: Journal of Mechanical Design 143.10 (Apr. 2021),
p. 104502. ISSN: 1050-0472. DOI: 10.1115/1.4050382.
eprint: https://asmedigitalcollection.asme.
org/mechanicaldesign/article-pdf/143/10/
104502/6679773/md_143_10_104502.pdf.
URL: https://doi.org/10.1115/1.4050382.

[5] Priyanka Rao, Quentin Peyron, Sven Lilge, and Jessica
Burgner-Kahrs. “How to Model Tendon-Driven Continuum
Robots and Benchmark Modelling Performance”. In: Fron-
tiers in Robotics and AI 7 (2021). ISSN: 2296-9144. DOI: 10.
3389/frobt.2020.630245. URL: https://www.
frontiersin.org/articles/10.3389/frobt.
2020.630245.

[6] Matteo Russo, Seyed Mohammad Hadi Sadati, Xin Dong,
Abdelkhalick Mohammad, Ian D. Walker, Christos Bergeles,
Kai Xu, and Dragos A. Axinte. “Continuum Robots: An
Overview”. In: Advanced Intelligent Systems 5.5 (2023),
p. 2200367. DOI: https://doi.org/10.1002/aisy.
202200367. eprint: https : / / onlinelibrary .
wiley.com/doi/pdf/10.1002/aisy.202200367.
URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/aisy.202200367.

[7] Bowen Yi, Yeman Fan, Dikai Liu, and Jose Guadalupe
Romero. Simultaneous Position-and-Stiffness Control of Un-
deractuated Antagonistic Tendon-Driven Continuum Robots.
2023. arXiv: 2306.03865 [cs.RO].

[8] Raymond R. Ma and Aaron M. Dollar. “Linkage-Based
Analysis and Optimization of an Underactuated Planar
Manipulator for In-Hand Manipulation”. In: Journal of
Mechanisms and Robotics 6.1 (Nov. 2013), p. 011002.
ISSN: 1942-4302. DOI: 10.1115/1.4025620. eprint:
https://asmedigitalcollection.asme.org/
mechanismsrobotics / article - pdf / 6 / 1 /
011002/6251362/jmr_006_01_011002.pdf.
URL: https://doi.org/10.1115/1.4025620.

[9] Raphael Deimel, Patrick Irmisch, Vincent Wall, and Oliver
Brock. “Automated co-design of soft hand morphology
and control strategy for grasping”. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS) (2017), pp. 1213–1218. URL: https : / / api .
semanticscholar.org/CorpusID:3037063.

[10] Luca Barbazza, Damiano Zanotto, Giulio Rosati, and Sunil K.
Agrawal. “Design and Optimal Control of an Underactuated
Cable-Driven Micro–Macro Robot”. In: IEEE Robotics and
Automation Letters 2.2 (2017), pp. 896–903. DOI: 10.1109/
LRA.2017.2651941.

[11] Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Woj-
ciech Matusik, Shinjiro Sueda, and Pulkit Agrawal. “An
End-to-End Differentiable Framework for Contact-Aware
Robot Design”. In: ArXiv abs/2107.07501 (2021). URL:
https://api.semanticscholar.org/CorpusID:
235651322.

[12] Tianjian Chen, Zhanpeng He, and Matei Ciocarlie. “Hardware
as Policy: Mechanical and ComputationalCo-Optimization
using Deep Reinforcement Learning”. In: Conference on
Robotic Learning (CoRL). 2020.

[13] Zhanpeng He and Matei T. Ciocarlie. “MORPH: Design
Co-optimization with Reinforcement Learning via a Differ-
entiable Hardware Model Proxy”. In: ArXiv abs/2309.17227
(2023). URL: https : / / api . semanticscholar .
org/CorpusID:263310528.

[14] Zhong-Ping Jiang. “Controlling Underactuated Mechanical
Systems: A Review and Open Problems”. In: Advances in
the Theory of Control, Signals and Systems with Physical
Modeling. Ed. by Jean Lévine and Philippe Müllhaupt. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 77–88.
ISBN: 978-3-642-16135-3. DOI: 10.1007/978-3-642-
16135-3_7. URL: https://doi.org/10.1007/
978-3-642-16135-3_7.

[15] Ryuta Ozawa, Kazunori Hashirii, and Hiroaki Kobayashi.
“Design and control of underactuated tendon-driven mecha-
nisms”. In: 2009 IEEE International Conference on Robotics
and Automation. 2009, pp. 1522–1527. DOI: 10.1109/
ROBOT.2009.5152222.

[16] Aaron M. Dollar and Robert D. Howe. “The SDM Hand:
A Highly Adaptive Compliant Grasper for Unstructured
Environments”. In: Experimental Robotics. Ed. by Ous-
sama Khatib, Vijay Kumar, and George J. Pappas. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 3–11.
ISBN: 978-3-642-00196-3.

[17] Yanyu Su, Yan Wu, Kyuhwa Lee, Zhijiang Du, and Yiannis
Demiris. “Robust grasping for an under-actuated anthropo-
morphic hand under object position uncertainty”. In: 2012
12th IEEE-RAS International Conference on Humanoid
Robots (Humanoids 2012). 2012, pp. 719–725. DOI: 10.
1109/HUMANOIDS.2012.6651599.

[18] Giorgio Grioli, Manuel Catalano, Emanuele Silvestro, Si-
mone Tono, and Antonio Bicchi. “Adaptive synergies: An
approach to the design of under-actuated robotic hands”.
In: 2012 IEEE/RSJ International Conference on Intelligent

https://doi.org/https://doi.org/10.1016/0094-114X(78)90059-9
https://doi.org/https://doi.org/10.1016/0094-114X(78)90059-9
https://www.sciencedirect.com/science/article/pii/0094114X78900599
https://www.sciencedirect.com/science/article/pii/0094114X78900599
https://doi.org/10.1109/ROBOT.2010.5509793
https://doi.org/10.1109/ICRA.2013.6630956
https://doi.org/10.1115/1.4050382
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/143/10/104502/6679773/md_143_10_104502.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/143/10/104502/6679773/md_143_10_104502.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/143/10/104502/6679773/md_143_10_104502.pdf
https://doi.org/10.1115/1.4050382
https://doi.org/10.3389/frobt.2020.630245
https://doi.org/10.3389/frobt.2020.630245
https://www.frontiersin.org/articles/10.3389/frobt.2020.630245
https://www.frontiersin.org/articles/10.3389/frobt.2020.630245
https://www.frontiersin.org/articles/10.3389/frobt.2020.630245
https://doi.org/https://doi.org/10.1002/aisy.202200367
https://doi.org/https://doi.org/10.1002/aisy.202200367
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202200367
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202200367
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200367
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200367
https://arxiv.org/abs/2306.03865
https://doi.org/10.1115/1.4025620
https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/6/1/011002/6251362/jmr_006_01_011002.pdf
https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/6/1/011002/6251362/jmr_006_01_011002.pdf
https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/6/1/011002/6251362/jmr_006_01_011002.pdf
https://doi.org/10.1115/1.4025620
https://api.semanticscholar.org/CorpusID:3037063
https://api.semanticscholar.org/CorpusID:3037063
https://doi.org/10.1109/LRA.2017.2651941
https://doi.org/10.1109/LRA.2017.2651941
https://api.semanticscholar.org/CorpusID:235651322
https://api.semanticscholar.org/CorpusID:235651322
https://api.semanticscholar.org/CorpusID:263310528
https://api.semanticscholar.org/CorpusID:263310528
https://doi.org/10.1007/978-3-642-16135-3_7
https://doi.org/10.1007/978-3-642-16135-3_7
https://doi.org/10.1007/978-3-642-16135-3_7
https://doi.org/10.1007/978-3-642-16135-3_7
https://doi.org/10.1109/ROBOT.2009.5152222
https://doi.org/10.1109/ROBOT.2009.5152222
https://doi.org/10.1109/HUMANOIDS.2012.6651599
https://doi.org/10.1109/HUMANOIDS.2012.6651599

Robots and Systems. 2012, pp. 1251–1256. DOI: 10.1109/
IROS.2012.6385881.

[19] Cosimo Della Santina, Cristina Piazza, Giorgio Grioli,
Manuel G. Catalano, and Antonio Bicchi. “Toward Dexterous
Manipulation With Augmented Adaptive Synergies: The
Pisa/IIT SoftHand 2”. In: IEEE Transactions on Robotics
34.5 (2018), pp. 1141–1156. DOI: 10.1109/TRO.2018.
2830407.

[20] Tianjian Chen, Tianyi Zhang, and Matei Ciocarlie. “Design
Paradigms Based on Spring Agonists for Underactuated
Robot Hands: Concepts and Application”. In: 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA).
2021, pp. 7100–7106. DOI: 10.1109/ICRA48506.2021.
9561832.

[21] L. Udawatta, K. Watanabe, K. Izumi, and K. Kiguchi.
“Control of underactuated robot manipulators using switching
computed torque method: GA based approach”. English. In:
Soft Computing 8.1 (2003), pp. 51–60. ISSN: 1432-7643. DOI:
10.1007/s00500-002-0257-8.

[22] Lael U. Odhner and Aaron M. Dollar. “Dexterous manip-
ulation with underactuated elastic hands”. In: 2011 IEEE
International Conference on Robotics and Automation. 2011,
pp. 5254–5260. DOI: 10.1109/ICRA.2011.5980263.

[23] Andrew S. Morgan, Kaiyu Hang, Bowen Wen, Kostas Bekris,
and Aaron M. Dollar. “Complex In-Hand Manipulation
Via Compliance-Enabled Finger Gaiting and Multi-Modal
Planning”. In: IEEE Robotics and Automation Letters 7.2
(2022), pp. 4821–4828. DOI: 10 . 1109 / LRA . 2022 .
3145961.

[24] Lucy Jackson, Celyn Walters, Steve Eckersley, Pete Senior,
and Simon Hadfield. “ORCHID: Optimisation of Robotic
Control and Hardware In Design using Reinforcement
Learning”. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2021, pp. 4911–4917.
DOI: 10.1109/IROS51168.2021.9635865.

[25] David R Ha. “Reinforcement Learning for Improving Agent
Design”. In: Artificial Life 25 (2018), pp. 352–365. URL:
https://api.semanticscholar.org/CorpusID:
52945447.

[26] Charles Schaff, David Yunis, Ayan Chakrabarti, and Matthew
R Walter. “Jointly learning to construct and control agents
using deep reinforcement learning”. In: IEEE Intl. Conf. on
Robotics and Automation. IEEE. 2019, pp. 9798–9805.

[27] Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba.
“Neural Graph Evolution: Automatic Robot Design”. In:
International Conference on Learning Representations. 2019.
URL: https : / / openreview . net / forum ? id =
BkgWHnR5tm.

[28] Kevin Sebastian Luck, Heni Ben Amor, and Roberto Ca-
landra. “Data-efficient Co-Adaptation of Morphology and
Behaviour with Deep Reinforcement Learning”. In: Con-
ference on Robot Learning. 2019. URL: https://api.
semanticscholar.org/CorpusID:208139268.

[29] Ye Yuan, Yuda Song, Zhengyi Luo, Wen Sun, and Kris M.
Kitani. “Transform2Act: Learning a Transform-and-Control
Policy for Efficient Agent Design”. In: ArXiv abs/2110.03659
(2021). URL: https : / / api . semanticscholar .
org/CorpusID:238419578.

[30] Nikolaus Hansen and Andreas Ostermeier. “Completely
derandomized self-adaptation in evolution strategies”. In:
Evolutionary computation 9.2 (2001), pp. 159–195.

[31] D. Kraft. A Software Package for Sequential Quadratic
Programming. Deutsche Forschungs- und Versuchsanstalt
für Luft- und Raumfahrt Köln: Forschungsbericht. Wiss.
Berichtswesen d. DFVLR, 1988. URL: https://books.
google.com/books?id=4rKaGwAACAAJ.

https://doi.org/10.1109/IROS.2012.6385881
https://doi.org/10.1109/IROS.2012.6385881
https://doi.org/10.1109/TRO.2018.2830407
https://doi.org/10.1109/TRO.2018.2830407
https://doi.org/10.1109/ICRA48506.2021.9561832
https://doi.org/10.1109/ICRA48506.2021.9561832
https://doi.org/10.1007/s00500-002-0257-8
https://doi.org/10.1109/ICRA.2011.5980263
https://doi.org/10.1109/LRA.2022.3145961
https://doi.org/10.1109/LRA.2022.3145961
https://doi.org/10.1109/IROS51168.2021.9635865
https://api.semanticscholar.org/CorpusID:52945447
https://api.semanticscholar.org/CorpusID:52945447
https://openreview.net/forum?id=BkgWHnR5tm
https://openreview.net/forum?id=BkgWHnR5tm
https://api.semanticscholar.org/CorpusID:208139268
https://api.semanticscholar.org/CorpusID:208139268
https://api.semanticscholar.org/CorpusID:238419578
https://api.semanticscholar.org/CorpusID:238419578
https://books.google.com/books?id=4rKaGwAACAAJ
https://books.google.com/books?id=4rKaGwAACAAJ

	Introduction
	Related Work
	Method
	Transmission design
	Forward actuation model for our transmission design
	Task-aware co-optimization of design and control

	Experimental Set-up
	Design and control co-optimization
	Hardware implementation and sim-to-real transfer

	Results and Analysis
	Co-optimization results
	Sim-to-real accuracy
	Energy manifold optimization

	Conclusion

